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Abstract. The thermodynamics of the spin-S anisotropic quantum XXZ chain with arbitrary value of
S and unitary norm, in the high-temperature regime, is reported. The single-ion anisotropy term and
the interaction with an external magnetic field in the z-direction are taken into account. We obtain, for
arbitrary value of S, the β-expansion of the Helmholtz free energy of the model up to order β6 and show
that it actually depends on 1

S(S+1)
. Its classical limit is obtained by simply taking S → ∞. At h = 0 and

D = 0, our high temperature expansion of the classical model coincides with Joyce’s exact solution [11].
We study, in the high temperature region, some thermodynamic quantities such as the specific heat and
the magnetic susceptibility as functions of spin and verify for which values of S those thermodynamic
functions behave classically. Their finite temperature behavior is inferred from interpolation of their high-
and low-temperature behavior, and shown to be in good agreement with numerical results. The finite
temperature behavior is shown for higher values of spin.

PACS. 05.30.Ch Quantum ensemble theory – 75.10.Jm Quantized spin models – 75.10.Hk Classical spin
models

1 Introduction

One-dimensional and quasi-one-dimensional quantum
chain models have been intensively investigated for a
twofold reason. On one hand, for the algebraic properties
of spin-1/2 chain models (XXZ and generalized ladder
models) which, being integrable models, can be solved ex-
actly by the powerful Bethe ansatz technique (see Refs. [1]
and [2], respectively). On the other hand, for the existence
of quasi one-dimensional magnetic systems that exhibit
nearly ideal one-dimensional behavior for some interval
of temperature. The thermodynamic properties of those
magnetic systems have been described by spin-S XXZ
models for various values of spin, mixed-spin models, lad-
der models, etc. In particular, there are materials well de-
scribed by higher spin values of the XXZ models such as
CsVCl3 and CsVBr3 (S = 3/2) [3–5], (C10H8N2)MnCl3
(S = 2) [6] and (CD3)4NMnCl3 (S = 5/2) [7,8]. Moti-
vated by the discovery of these materials, the magnetic
and thermodynamic properties of the ferro- and antiferro-
magnetic isotropic spin-S XXZ model for higher values of
S have been studied numerically and analytically (e.g., the
high temperature expansions; see Ref. [9] and references
therein).

The classical limit (S → ∞) of the XXZ model is
exactly soluble and was originally solved by Fisher [10],

a e-mail: or@stout.ufla.br

in the isotropic regime, for a null external magnetic field
and no single-ion anisotropy term. Its anysotropic case has
been solved by Joyce [11], also in the absence of an ex-
ternal magnetic field and without a single-ion anisotropy
term, by writing the Helmholtz free energy of the classi-
cal XXZ model as an integral equation whose solution is
the spheroidal wave function. Unfortunately, in the pres-
ence of an external magnetic field and/or the single-ion
anisotropy parameter, the solution of the integral equa-
tion cannot be reduced to any known function.

Recently, Fukushima et al. [12] obtained the specific
heat and the magnetic susceptibility per site of a ferromag-
netic mixed-spin model, with two kinds of spins, s and S,
arranged alternatively and coupled by a Heisenberg-type
nearest-neighbor exchange for arbitrary values of s and S
at the isotropic point (∆ = 1 in Eq. (1)) and in the ab-
sence of external magnetic fields. They obtained numerical
results through the exact diagonalization method and the
analytical high temperature expansions. For s = S their
model becomes a one-dimensional spin-S XXZ model
for arbitrary value of S. Their high temperature expan-
sion of the specific heat per site, in the absence of an
external magnetic field, goes up to order (βJ)11 and
their expansion of the magnetic susceptibility, also for a
vanishing magnetic field, goes up to (βJ)7 with a single-
ion anisotropy term in one of the spins. In reference [9]
we extended the results of reference [12], for spin values
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up to S = 4, including a free parameter of anisotropy in
the z-direction, a single-ion anisotropy term and a non-
zero external magnetic field in the β-expansions of the
Helmholtz free energies up to order (Jβ)6.

Following reference [9], we also consider the Hamil-
tonian of the anisotropic spin-S XXZ with a single-ion
anisotropy term and in the presence of an external mag-
netic field,

H =
N∑

i=1

J ′ (Si,Si+1)∆ − h′Sz
i + D′(Sz

i )2. (1)

We use the notation: (Si,Si+1)∆ ≡ Sx
i Sx

i+1 + Sy
i Sy

i+1 +
∆Sz

i Sz
i+1. Here, Sx

i , Sy
i and Sz

i stand for the spin-S ma-
trices in the i-th site of the chain and norm

√
S(S + 1);

N is the number of sites in the periodic chain; J ′ is the
exchange integral; ∆ is the anisotropy constant in the
z-direction; h′ is the external magnetic field in the z-axis
and D′ is the single-ion anisotropy parameter.

Even in one spatial dimension, the solution of the
quantum chain model (1) is more complex if we con-
sider a finite arbitrary spin-S (with S �= 1/2) once the
XXZ model becomes a non-integrable model and cannot
be solved by the thermodynamic Bethe ansatz technique.

Numerical approaches for higher spin values becomes
more involved since there are more degrees of freedom to
be handled. Certainly, the high temperature expansions
are easily manipulated by symbolic computer languages
and can be used as a reliable check for numerical calcula-
tions in the high temperature regime.

The aim of the present communication is to extend
the results of reference [9] to arbitrary values of the spin
S in hamiltonian (1). In doing so, we are including in the
results of reference [12] the effects of anisotropies in the
z-direction of the XXZ model in the presence of an exter-
nal magnetic field. Having a high temperature expansion
for the model, for any S, we can derive its classical limit
in this regime of temperature. We want to re-obtain the
classical results of the Heisenberg model by considering
the quantum nature of the spin variable, in opposition
to the known results in the literature where this limit is
derived from a chain of classical spins. From the high tem-
perature expansion of the Helmholtz free energy, we can
also verify for which values of S the anisotropic quantum
XXZ model, in the presence of an external magnetic field,
is well described by its classical version, extending the re-
sults of reference [9]. In the present article, comparison
of thermodynamic functions for different values of S is
performed at the same (high) T , whereas in reference [9],
they were plotted as functions of the “rescaled” tempera-
ture T̃ = T

S(S+1) .
This paper is organized as follows: in Section 2 we

use the method developed in reference [13] and an inter-
polation technique to obtain the high-temperature series
expansion of the Helmholtz free energy for the quantum
spin-s XXZ chain (s with unitary norm) up to order β6. In
order to check our analytic β-expansion, in Section 2.1 our
results for the classical limit (S → ∞) are compared to
the well-known isotropic [10] and anisotropic [11] classical

Heisenberg chains. In Section 2.2 our results for finite val-
ues of S are explored to include the effect of the anisotropy
parameter ∆, the presence of D′ and h′ in the Hamiltonian
(1) and the dependence of thermodynamic functions on S.
In Section 3 we use Padé representatives to enhance our
high-temperature expansions for the spin-s XXZ model,
extending them to lower temperatures. We do so by taking
into account the known behavior at T ∼ 0. For the spe-
cific heat we use the method presented in reference [14],
whereas for the magnetic susceptibility we apply the Dlog-
Padé approximant [15] (antiferromagnetic case) and the
two-point Padé approximant [16] (ferromagnetic case). In
Section 4 we present our conclusions. In Appendix A we
show that the trace of powers of Sz can be written as
an expansion in the square of the norm of the spin at
each site. Finally, in Appendix B we present the high-
temperature expansion, up to order β6, of the Helmholtz
free energy of the spin-s XXZ model (|s| = 1), with a
single-ion anisotropy term and in the presence of an ex-
ternal magnetic field.

2 The high temperature behavior
of the quantum spin-s XXZ chain

We intend to study the thermodynamics of the Hamil-
tonian (1) for arbitrary spin, including its classical limit
(S → ∞). In this limit, the thermodynamic functions
diverge and to render them finite we define a rescaled
spin operator s ≡ S/

√
S(S + 1). This rescaled spin

operator has unitary norm for all values of S. Rewriting
the Hamiltonian (1) in terms of s and redefining the
parameters J ≡ S(S + 1)J ′, h ≡ √

S(S + 1)h′ and
D ≡ S(S + 1)D′, we obtain

H =
N∑

i=1

J (si, si+1)∆ − hsz
i + D(sz

i )
2. (2)

This also describes the dynamics of the XXZ model
of a spin of unitary norm and (2S + 1) z-components.
We continue to use the notation: (si, si+1)∆ ≡ sx

i sx
i+1 +

sy
i s

y
i+1 +∆sz

i s
z
i+1. Here, sx

i , sy
i and sz

i stand for the spin-s
(s = 1/2, 1, 3/2, · · · ) rescaled matrices in the i-th site of
the chain; N is the number of sites in the periodic chain;
and ∆ is the anisotropy constant in the z-direction.

In order to evaluate the Helmholtz free energy for ar-
bitrary values of spin, we first calculate its expansion for a
set of spin values using the Hamiltonian (2). We apply the
method of reference [13] to calculate those β-expansions
for arbitrary values of J , ∆, h and D. We presented else-
where [9] the Helmholtz free energy of Hamiltonian (1) for
a number of spin values (semi-integer and integer) up to
S = 4. We use the interpolation method to extend our re-
sults for fixed values of S to arbitrary spin value. For the
sake of obtaining the β-expansion of any spin-S quantum
chain up to order β6, having the expansions presented in
reference [9] is not enough.

In order to derive the expansion of the Helmholtz free
energy of the hamiltonian (1) up to order βn (for a survey
of the method [13], cf. Sect. 2 of Ref. [9]), we have to
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calculate normalized traces, at each site, of the products
of mi matrices from the set {Sx, Sy, Sz}, so that mi ≤
2(k + 1) and k ranges over all possible powers of β, k =
1, 2, · · · , n. Due to the commutation relation [Sx, Sy] =
iSz and to the fact that the products SxSy and SySx can
be written in terms of Sz, (Sz)2 and the identity matrix 1,
then the normalized trace at each site is reduced to the
calculation of traces of (Sz)l, with l ∈ N .

In equation (A.1) we show that the tr((Sz)l), for even
values of l, is a polynomial of degree (l+1) in S. Therefore
the polynomial in S of highest degree at order βn is of
order 2(n+1). In order to carry out the interpolation of the
expansion up to order β6, we calculated the β-expansion
of the Helmholtz free energy from the spin S = 1/2 up to
S = 7. Later, by inspection of the expansion in S and in
β, we verified that the expansion in S can be rewritten in
terms of S(S + 1), that is, in terms of the eigenvalue of a
constant of motion (the square of the norm of the spin-S at
each site). In Appendix A we show, for arbitrary value of
spin, that tr[(Sz

i )2l], l = 1, 2 · · · , is a polynomial of degree
(l − 1) in the parameter S(S + 1).

The thermodynamic properties of the quantum spin-
S XXZ chain, in the high temperature region, can be
obtained from its Helmholtz free energy. We present in
Appendix B the coefficients of the Helmholtz free energy
Ws(β) derived from the Hamiltonian (2), up to order β6,
for any value of S(S = 1/2, 1, 3/2, · · · ). In particular, the
result of Appendix B is also valid at the isotropic point
of the Hamiltonian (2) with D = 0 and h = 0, when
the model has rotational symmetry. The β-expansion of
the Helmholtz free energy of Hamiltonian (1) is easily ob-
tained from result (B.3) (see Appendix B). Fukushima
et al. [12] obtained the β-expansion of the specific heat
and magnetic susceptibility per site of the latter model
for arbitrary spin at the isotropic point and in the ab-
sence of an external magnetic field. Our results agree with
theirs, up to order β6.

The range of validity in β of our high-temperature ex-
pansions obviously depends on the particular values given
to the parameters of (2). The thermodynamic properties
of the chain depend on the sign of the product J∆. We let
J > 0 and let ∆ refer to either the ferromagnetic (∆ < 0)
or the antiferromagnetic (∆ > 0) phases.

2.1 Comparison with known classical limits (S→ ∞)

An interesting check to our expansion (B.3) is to verify
if it recovers known classical limits (S → ∞ or y → 0,
where y = 1

S(S+1) ) of the XXZ chain. The classical limit
of the XXZ chain of the Hamiltonian (2) with h = 0 and
D = 0 has been solved by Joyce [11]; this model (includ-
ing the anisotropic constant ∆ in the Hamiltonian (2)) is
exactly solvable and its Helmholtz free energy is given by
the radial component of the spheroidal wave function

W∞(µ; β) = − 1
β

ln
(
R0,0(−iβJ/ sinh µ, coshµ)

)
, (3)

where µ = tanh−1( 1
∆) and R0,0 is the first radial

spheroidal wave function [17]. For |∆| = 1, equa-
tion (3) becomes the well-known result obtained by

Fisher [10], whose explicit expression is W∞(±π
2 , β) =

− 1
β ln[sinh(βJ)/(βJ)].
The classical limit of the β-expansion (B.3) is obtained

by letting y = 0. In order to have a shorter β-expansion
of the Helmholtz free energy at y = 0, we take D = 0,
and obtain

W∞(∆, h̃, 0; Jβ) =
(
−1

6
h̃2 − 1

9
− 1

18
∆2

)
(Jβ)

+
1
9

∆ h̃2 (Jβ)2

+
(

1
180

h̃4 − 1
1350

− 7
135

∆2 h̃2

− 7
2700

∆4 +
2

135
h̃2 +

2
225

∆2

)
(Jβ)3

+
(
− 2

135
∆ h̃2 − 4

225
∆ +

46
2025

∆3

)
h̃2(Jβ)4

+
(

424
42525

∆2 h̃2 +
179
9450

∆2 h̃4 − 359
42525

∆4 h̃2

− 2
2835

h̃2 − 1
525

h̃4 − 107
2679075

∆6 +
212

893025
∆4

− 632
893025

∆2 +
422

2679075
− 1

2835
h̃6

)
(Jβ)5

+
(

16
2835

∆ h̃2 − 248
14175

∆3 h̃2

+
2566

893025
∆5 +

1264
893025

∆ − 836
178605

∆3

+
1

525
∆ h̃4

)
h̃2(Jβ)6 + O((Jβ)7), (4)

where h̃ ≡ h/J .
From (4) we see that in the absence of the external

magnetic field (h = 0) the Helmholtz free energy is an
even function of the anisotropic parameter ∆. Under this
condition, the classical limit of the XXZ model does not
distinguish between the ferromagnetic and the antiferro-
magnetic phases in the region of high temperatures.

Figure 1a shows a comparison of our β-expansion of
the Helmholtz free energy to the numerical solution of
equation (3), for h = 0, D = 0 and ∆ = ±0.5. They are
in good agreement in the high temperature region; the
percental error between them at kT/J = 0.2 is less than
2.8%. Figure 1b performs the same comparison, but at the
isotropic point (∆ = ±1). We also have good agreement,
but for higher temperatures; percental error is about 3%
for kT/J = 0.4.

In conclusion, the classical limit of the expansion (B.3)
(for y = 0) coincides with Joyce’s solution (3) of the
Helmholtz free energy of the Hamiltonian (2) in a larger
interval of temperature than that which we call “high tem-
perature region”.

2.2 The thermodynamics of the spin-s XXZ model

The greater the (finite) spin, the greater the number of
degrees of freedom to be handled, thus the more involved
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it gets to compute thermodynamic properties of the quan-
tum spin-S model. In contrast, for infinite values of spin,
the calculation of those properties for the classical version
of the model is simpler, since we can treat the spin as a
vector that rotates continuously. It is interesting to know
for which values of S the quantum spin model can be well
approximated by its classical version, at least in the high
temperature region.

In reference [9] we compared various thermodynamic
functions of the chain model at the Heisenberg point
(∆ = ±1), in the absence of the single-ion anisotropy term
and external magnetic fields. We verified, in the high tem-
perature region, that thermodynamic functions like the
magnetic susceptibility per site have a classical behavior,
for S ≥ 2. Our intention in this section is to extend the
results of reference [9] in order to include in this compar-
ison (quantum × classical behavior) of spin models with
anisotropies in the z-direction (∆ �= ±1 and D �= 0) and
in the presence of an external magnetic field. This analysis
can be realized from the expansion (B.3) of Ws(β). The
referred thermodynamic functions are all derived from the
Hamiltonian (2).

Let Cs(β) and CS(β) be the specific heat per site for
the spin-s model (with unitary norm) and for the spin-S
chain (with norm equal to

√
S(S + 1)), respectively. The

specific heat per site is calculated from a derivative of
the Helmholtz free energy (C(β) = −β2 ∂2(βW(β))

∂β2 ). From
the results (B.2) we obtain,

Cs(J, ∆, h, D; β) = CS

(
J, ∆,

√
S(S + 1)h, D;

β

S(S + 1)

)

(5a)

= CS

(
J

S(S + 1)
, ∆,

h√
S(S + 1)

,
D

S(S + 1)
; β

)
.

(5b)

These results show that CS is a homogeneous function of
zero degree for all temperatures. The β- expansion of the
specific heat derived from equations (B.3) satisfies equa-
tions (5) identically.

From the high temperature expansion of Cs we verify
that Cs = −( D2

15S(S+1) − h2

3 − 2
9 − 4D2

45 − ∆2

9 )β2 + O(β3).
In the high temperature region, the XXZ model presents
a tail of the Schottky peak [18] (CSch ∝ β2), for all values
of S.

Figure 2 shows the specific heat per site as a function
of Jβ for distinct values of S, including the classical limit
(S → ∞) of the Hamiltonian (2) and the relative percental
error of this function for various values of S in relation to
the classical specific heat per site. We take h/J = 0.5
and D/J = 0.7. Figure 2a pictures the antiferromagnetic
case (∆ = 0.3) and (2c) the ferromagnetic case (∆ =
−0.3). Figures 2b and d show the relative percental error,
i.e.,

∣∣∣C∞−Cs

C∞

∣∣∣ × 100%, of Figures 2a and c, respectively,
where C∞ is the classical limit of the specific heat per site.
In both cases, even the S = 2 model behaves classically
(within an error smaller than 2%) up to Jβ = 0.3. Within
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*W

Delta=0.5

0 0,2 0,4 0,6 0,8 1
T
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b-expansion

Delta=1

Free energy (inf s)

a b

Fig. 1. The Helmholtz free energy W∞ (for S → ∞) per unit
of kT/J as a function of kT/J for the classical XXZ model in
the absence of the single-ion anisotropy term (D = 0) and an
external magnetic field (h = 0). In (a) we plot the anisotropic
cases with ∆ = ±0.5 and in (b) the isotropic cases (∆ = ±1).
The solid line refers to the numerical solution of (3) and the
dashed line to the expansion (4).

this range of error, we can also neglect the quantum nature
of the spin model with S ≥ 5 up to Jβ ∼ 1.

Let χs(β) and χS(β) be the magnetic susceptibilities
per site of the spin-s model (with unitary norm) and of the
spin-S model (with norm equal to

√
S(S + 1)), respec-

tively. The relation between the magnetic susceptibility
per site and the Helmholtz free energy is χ(β) = −∂2W(β)

∂h2 .
From the results (B.2) we obtain the relation between χs

and χS ,

χs(J, ∆, h, D; β) = χS

(
J, ∆,

√
S(S + 1)h, D;

β

S(S + 1)

)

(6a)

=
1

S(S + 1)
χS

(
J

S(S + 1)
, ∆,

h√
S(S + 1)

,
D

S(S + 1)
; β

)
.

(6b)

Equating the r.h.s. of equations (6a) and (6b) we obtain
that χS is a homogenous function of degree 1 for all values
of temperature. Its β-expansion satisfies this property.

Figure 3 shows the magnetic susceptibility versus Jβ
for various finite values of S and the classical chain model
(S → ∞). Figure 3b shows the relative percentage error
of the magnetic susceptibility with respect to the classical
curve for S = 1, 3/2, 4 and 6. In Figure 3 we have ∆ = 1,
h/J = 0.3 and D/J = 0.5. From Figure 3b we verify that
the magnetic susceptibility of the spin-3/2 can be approx-
imated by the classical result up to Jβ ∼ 0.5 with an
error smaller than 2%. The classical magnetic susceptibil-
ity curve is a good approximation of the spin-2 model up
to Jβ ∼ 0.7.

Figure 4 shows the magnetization of the XXZ model
of the spin with unitary norm versus h/J (M(β) =
−W(β)

∂h ). We call Ms(β) the magnetization derived from
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Hamiltonian (2) and MS(β) the magnetization derived
from (1). From equations (B.2), we also obtain

Ms(J, ∆, h, D; β) =
√

S(S + 1) MS

(
J, ∆,

√
S(S + 1)h, D;

β

S(S + 1)

)

(7a)

=

1√
S(S + 1)

MS

(
J

S(S + 1)
, ∆,

h√
S(S + 1)

,
D

S(S + 1)
; β

)
.

(7b)

From equations (7) we obtain that MS is a homogeneous
function of degree 1 at all temperatures. This condition is
satisfied by the β-expansion of the magnetization, derived
from equation (B.3).

Figure 4a shows the magnetization Ms as a function of
h/J at Jβ = 0.4. We choose the same values of constants
in the Hamiltonian (2) as in Figure 3, ∆ = 1 and D/J =
−0.5. Comparison of Figures 3b and 4b shows a closer
similarity of quantum and classical magnetization curves
(even for low values of spin such as S = 3/2) than that of
magnetic susceptibility curves, as far as high temperatures
are concerned.
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The correlation function of spin z-components between
first neighbors is written as 〈Sz

i Sz
i+1〉s = ∂Ws(β)

∂∆ , for a
given spin s. Its percental variation (when s varies by half-
integer steps), shown in Figure 5, is defined as

δs〈Sz
i Sz

i+1〉 ≡
〈Sz

i Sz
i+1〉(s+1/2) − 〈Sz

i Sz
i+1〉s

〈Sz
i Sz

i+1〉s
. (8)

For S � 1, the function δs〈Sz
i Sz

i+1〉 has an expansion in
S−1 whose leading term is S−3, and its coefficient depends
on the temperature. In Figure 5 we take ∆ = 1, h/J =
0.3 and D/J = −0.5. In the very high temperature of
Jβ = 0.2, only the correlation functions for S = 1/2 and
S = 1 differ from the classical curve by a difference smaller
than 0.6%. As we lower the temperature, spins of higher
values have correlation functions between first neighbors

that differ slightly from the classical ones, but even at
Jβ ∼ 0.8, the correlation function for S = 2 approximates
the classical result with an error smaller than 1%.

3 Extension of the thermodynamics
of the quantum spin-s XXZ chain to lower
temperatures

Although there are only seven terms in the high-
temperature expansion of the Helmholtz free energy of
the spin-s XXZ model (see Appendix B), different Padé
approximants permit us to enhance our analytic results
and extend them to lower temperatures. In this section,
we shall assume a quantum spin chain with unitary norm.

Bernu and Misguich [14] presented an approach to “in-
terpolate” the high- and low-temperature behaviors of the
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specific heat per site, provided that the ground state en-
ergy per site of the chain is known. We refer the reader to
their work for details on the method.

The XXZ models (with S �= 1/2), at the isotropic
points (∆± 1), are among the most studied ones. For this
reason, in this section we calculate the Padé approximants
at those points, for the sake of comparison of our results
to the literature.

At T ∼ 0 the behavior of the specific heat per site is
distinct for gap and gapless models. Ferromagnetic and
half-odd integer spin chains do not have excitation en-
ergy gaps and the specific heat per site around T = 0 is
Cs ∼ T p/q, where p and q are integers [14]. By contrast,
the integer antiferromagnetic spin chains have an energy
gap between the ground state energy and the lowest exited
state and this thermodynamic function, in the region of
T ∼ 0, is Cs ∼ e−

Egap
kT T α[14,19,20], where α depends on

the spin. Particularly for S = 1 α is −3/2 [20], whereas for
S ≥ 2 its unknown.As the spin increases, this energy gap
decreases rapidly; it only vanishes at the classical limit
(S → ∞), though.

In reference [21], Yamamoto studied numerically the
thermodynamics of the S = 2 XXZ model with ∆ = 1,
D = 0 and h = 0. The ground state energy per site
of this model for the non-unitary spin chain was ob-
tained in reference [22]. The ground state energy per site
of the unitary spin chain can then be easily obtained,
namely e0/J = −0.79354. This model exhibits an en-
ergy gap Egap/J ≈ 0.0149 [22]. At very low tempera-
tures it is expected that the specific heat vanish expo-
nentially (Cs ∼ exp(−Egap/kT )) as T → 0. On the other
hand, the spin wave theory yields a linear behavior for
the specific heat over a finite interval of intermediate low
temperatures [23]. We compare the numerical results of
Yamamoto· [21] for the specific heat per site with our ex-
tended results for the antiferromagnetic spin-2 chain at
lower temperatures. The lowest value of kT/J in refer-
ence [21] is 0.083, which is larger than Egap/J . Therefore,
the available data for comparison refers to the interme-
diate low temperature region. In order to enhance our
β-expansion of C2(T ) to lower temperatures, we simply
use C2 ∼ T . The entropy at low temperatures behaves as
S(e) = (e− e0)1/2, where e is the ground state energy per
site, and it has an essential singularity when e → e0. Fol-
lowing reference [14], we construct an auxiliary function
G(e) ≡ (S(e))2, which is analytic in the interval [e0, 0],
and use the Padé approximant to fit G(e), so the entropy
becomes S(e) = G̃(e)1/2. By G̃(e) we denote the Padé ap-
proximant to G(e). The specific heat per site of the model
is obtained using the relation C2(e) = −S′(e)2/S′′(e),
which can be plotted in parametric form {T (e), C2(e)}
(for details see Ref. [14]).

In Figure 6 (top) we compare all “acceptable”
Padé approximants Pn,m (i.e., all approximants so that
n + m = 7 and that do not possess spurious singu-
larities) and their average Pavr , to the numerical re-
sults obtained by the quantum Monte Carlo method
(QMC) [21] and the β-expansion of C2(T ). Figure 6
(bottom) displays the percental deviation of each Padé
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C2(T ). (Bottom) The ∆C2(T )100% represents the percental
deviation of all acceptable (non-singular) Padé approximants
and the QMC results [21] with respect to the average of Padé
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Fig. 7. The specific heat versus temperature for several values
of spin at the isotropic point ∆ = 1 with h = 0 and D = 0.
For each value of spin, the curve is obtained by taking the av-
erage of all “acceptable” Padé approximants (i.e., with no spu-
rious singularities), whereas in the classical limit corresponds
to Fisher’s solution.

approximant Pm,n with respect to Pavr. We define
∆C2(%) = (Pm,n − Pavr)/Pavr × 100%. The high tem-
perature expansion satisfactorily describes C2(T ) up to
kT/J ∼ 0.9. The solid line corresponds to the percental
deviation of Pavr with respect to the QMC prediction.
Although we have only seven terms in expansion (B.3)
of the Helmholtz free energy, the percental relative differ-
ence of the Padé approximants is smaller than 2, 5% for
kT/J ≈ 0.25, allowing good precision in calculating the
temperature where C2(T ) is maximum.

Figures 7 and 9 show the specific heat for several values
of spin for the antiferromagnetic (∆ = 1) and ferromag-
netic (∆ = −1) cases, respectively, allowing us to observe
how the specific heat per site approaches its classical limit
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as S varies. In order to show how the Padé approximants
enhance the high temperature solution of the specific heat
per site, Figure 7 also displays the β-expansion of each
Cs(T ). Following the spin wave theory, we assume that
the specific heat behaves as Cs ∼ T for the antiferromag-
netic [23] case, and as Cs ∼ T 1/2 in the ferromagnetic [24]
case. We fit the numerical values of the ground state en-
ergy per site calculated in reference [22], for the antiferro-
magnetic case with S = 1, 2 and 3, and extrapolate them
to the integer antiferromagnetic spin S chain. Our ap-
proximate result for this ground state energy per site is
e0/J ≈ −(1+0.3641/S+0.029/S2+0.0086/S3)S/(S +1).
For the ferromagnetic case at the Heisenberg point (∆±1)
with h = 0 and D = 0, the ground state energy simply
becomes e0/J = −S/(S + 1).

Figure 7 shows the specific heat as a function of tem-
perature for ∆ = 1, with D = 0 and h = 0. The curves
correspond to the Pavr of this thermodynamic function
for the following set of spin values, as well as their respec-
tive β-expansions: S = {3, 4, 5, 10, 20}. The exact classi-
cal curve corresponds to Fisher’s solution [10]. From our
numerical results, we verify that even the Padé approxi-
mants for S = 3 deviates less than 2% from the classical
result (S → ∞) up to kT/J ∼ 0.64, while for S = 5 this
deviation is about 2% only at kT/J ∼ 0.42.

Except for the classical limit (S → ∞), to the best of
our knowledge there are no known results of the specific
heat per site for S ≥ 3 for the whole range of temper-
ature. In order to assure the validity of our results for
the specific heat at lower temperatures, for distinct S as
presented in Figure 7, we plotted in Figure 8 the rela-
tive percental difference between the Padé approximants
without spurious poles and the average Padé for several
values of spin (S = 4, 6, 8 and 20). For all those values
of spin, it can be seen that deviations get larger than 2%
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Fig. 9. The specific heat per site versus temperature (kT/J)
for several values of spin in the ferromagnetic case. We take:
∆ = −1 with h = 0 and D = −0.1. Each curve is obtained by
plotting its Pavr, while the classical limit is obtained numeri-
cally.

for kT/J � 0.25, whereas their respective β-expansion are
good approximations only up to kT/J ∼ 0.8.

In Figure 7 we verify that the curves of the specific heat
for the antiferromagnetic case are close to the classical
curve up to low temperatures, even for S = 3. Comparing
its behavior to that of the ferromagnetic case, we plot in
Figure 9 the specific heat for several values of spin, taking
∆ = −1, h = 0 and D = −0.1. We assume that the specific
heat for the ferromagnetic case and small values of D still
behaves as CL ∼ T 1/2 and the ground state energy per
site is e0/J = −S/(S + 1)− DS/(S + 1)− D/3. The first
term in the ground state energy corresponds to the case
D = 0; the second one is the contribution of the single-ion
anisotropy to the ground state energy; and the last term
corresponds to its global shift. In order to simplify our
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calculations, we impose that the average energy vanishes
at β = 0 (otherwise it would be equal to D/3, that is, the
value obtained from our high temperature expansion).

As in the antiferromagnetic case, we do not know of
results that would allow comparison regarding the depen-
dence of the specific heat on the temperature in the in-
terval [0,∞]. In order to carry out a first check of the
curves in Figure 9, we proceed in a similar way as be-
fore when testing the antiferromagnetic curves. Figure 10
shows the relative percental differences of the Padé’s ap-
proximants and the respective β-expansion of Cs(T ) to
the average Padé for S = 1, 2, 3 and 5. We see that the
high temperature series describe well the specific heat of
the ferromagnetic chains for kT/J � 1. From theses plots
we verify that the extension of the high-temperature re-
sults to the region of lower temperatures for the ferromag-
netic case is worse than that of the antiferromagnetic case,
even though integer-spin ferromagnetic materials are gap-
less and the behavior of their specific heat about T = 0 is
well described by the spin-wave approach.

It is also possible to write the magnetic susceptibility
per site as a function of the ground state energy per site e.
Its low temperature behavior can be inferred from the
extrapolation in a similar fashion as that of the specific
heat per site. Unfortunately, convergence is not as much
as satisfactory. By applying the method of reference [14]
to the magnetic susceptibility, a large number of singular-
ities are found in the Padé approximants to this thermo-
dynamic function. For this reason we use the Dlog-Padé
approximant [15] to extend the high temperature expan-
sion of the antiferromagnetic susceptibility, incorporating
the low-temperature information in a simple way. We fol-
low reference [15] to calculate the Dlog-Padé approximant
of the magnetic susceptibility per site χ(β); we refer the
reader to this article for further details on the method.
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Fig. 11. The magnetic susceptibility for the antiferromagnetic
case ∆ = 1, D = 0 and h = 0. a) Dlog-Padé approximants of
χ(T ) versus kT/J are compared to QMC results [21]. b) the
average Dlog-Padé approximant of χ(T ) as a function of kT/J
for various spin values.

From reference [15], we verify that the Dlog-Padé approx-
imants are independent of the leading term coefficient of
the magnetic susceptibility at low temperatures, if it van-
ishes at T → 0. On the other hand, if it is non-null at
T = 0, we need to know the exact coefficient of the lead-
ing term of the magnetic susceptibility for T ∼ 0 in order
to calculate the Padé approximants at low temperatures.
This also occurs [25] for S = 1/2.

Using the QMC method, Yamamoto [21] obtained the
magnetic susceptibility of the antiferromagnetic S = 2
XXZ model (∆ = 1) in the whole interval of temperature
of a periodic chain with 96 sites. In Figure 11 we compare
the β-expansion of χ2(T ) and its Dlog-Padé approximants
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no external magnetic fields.

for S = 2, with ∆ = 1, D = 0 and h = 0 with Yamamoto’s
numerical results. Our extension to lower temperatures
assumes that the behavior of the magnetic susceptibility
around T = 0 be as T α exp(−Egap/kT ) with α ≈ −1/4;
the latter value yields the best fit to the QMC results [21].
The bottom of Figure 11 shows the percental difference be-
tween the QMC and the average Dlog-Padé approximant
to the magnetic susceptibility for S = 2; it can be seen that
∆χ2(%) ≤ 2% up to kT/J ≈ 0.2. From Figure 11 (top)
we verify that our high-temperature expansion of χ2(T )
fits well the numerical result only up to kT/J ∼ 0.7.

Figure 12 shows the deviation from the average Pavr

of the Dlog-Padé approximants to the magnetic suscepti-
bility, for the antiferromagnetic Heisenberg model (∆ = 1
and D = 0) for S = 1 and S = 3, showing the enhanced
extention of our high-temperature results to lower tem-
peratures. From reference [20] we obtain the behavior of
χ around T = 0 (α = 0.5); for S = 3 we assume α ≈ 0.

The behavior of the magnetic susceptibility at low tem-
perature for the ferromagnetic Heisenberg model (∆ = −1
and D = 0) was obtained by Takahashi [24] using the mod-
ified spin wave theory for arbitrary spin-S. The magnetic
susceptibility for the unitary spin chain for low tempera-
tures, in units of k, is

χs(T ) = 2
(

S
S+1

)2
T−2

(1
3
− aT 1/2 + a2T + O(T 3/2)

)
,

(9)

where a =
ζ(

1
2 )

2S

√
S+1

π and ζ(x) is the Riemann zeta func-
tion. When the Dlog-Padé approximant method [15] is
applied, not even the coefficient of the leading term of
equation (9) is used, but only its power. Therefore, a bet-
ter approximation will be achieved if we take into account
all the three terms in (9); we do so by applying the two-
point Padé approximant [16] method.

We verify from expansion (9) that χs(T ) is singular at
T = 0. Expansion (B.3) gives the β-expansion of χs(β)
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Fig. 13. (Top) The function (kT/J)2χ1(T ) versus kT/J of the
isotropic ferromagnetic S = 1 model (∆ = −1 and D = 0) in
the absence of external magnetic fields, for Pavr. (Bottom) The
relative percental difference of non-singular Padé approximants
to Pavr.

up to order β6. The first terms of χs(β) for ∆ = −1,
D = 0 and h = 0 are χs(β) ≈ β/3 + 2β2/9. We define
the auxiliary function Ps(β) ≡ χs(β)

β2 − 1
3β . This auxiliary

function is regular at T = 0 and T → ∞ (β = 0); its only
problems are that it has non-integer powers of β and it
does not have a Taylor expansion about T = 0. In order to
circumvent this drawback, we proceed as in reference [15]
and apply the transformation

u = β1/2/(1 + β1/2) ⇔ β = u2/(1 − u)2, (10)

where the parameter β ∈ [0,∞〉 is mapped onto u ∈ [0, 1].
The expansions of P , around T = 0 (u = 1) and β =
0 (u = 0), are polynomials in u and therefore we can
write its two-point Padé’s approximants, connecting the
expansions of Ps at u = 1 and u = 0.

Figure 13 shows the average Padé of the magnetic sus-
ceptibility for the isotropic ferromagnetic S = 1 model, in
the absence of an external magnetic field, obtained from
the two-point Padé method and using the transformation
(10). For all Padé approximants, the relative difference to
Pavr is smaller than 0.3% in the whole interval of temper-
ature.

Finally, Figure 14 shows the relative percental differ-
ence of various Padé approximants to the Pavr , in the case
of the ferromagnetic isotropic chain model (with D = 0)
and in the absence of an external magnetic field. The dif-
ference increases with S; however, for S = 5 the relative
difference is smaller than 2% up to kT/J ≈ 0.3.

4 Conclusions

In this report we present the high temperature expansion
of the Helmholtz free energy of the XXZ chain, in the
thermodynamic limit, for an arbitrary spin S up to order
β6. This expansion is analytic in S and in β and each co-
efficient of βn (n = −1, 0, 1, · · ·6) is exact. The model in-
cludes anisotropy in the z-direction, single-ion anisotropy



O. Rojas et al.: Thermodynamics of the quantum spin-S XXZ chain 395

-2

0

2

4

D
ch

i3
/2

p29
p56
p65
p83
p92

-6

-4

-2

0

2

D
ch

i2

p29
p56
p65
p74
p92

0 0,2 0,4 0,6 0,8 1
T

-4

-2

0

2

4

D
ch

i3

p29
p47
p56
p65
p74
p92

0 0,2 0,4 0,6 0,8 1
T

-4

-2

0

2

4

6

D
ch

i4

p29
p47
p56
p65
p74
p92

S=3/2
S=2

S=3 S=4

Fig. 14. The relative percental difference between the Padé approximants to the magnetic susceptibility (ferromagnetic case)
and Pavr for S = 3/2, 2, 3 and 4. Here, ∆ = −1, D = 0 and h = 0.

and an external magnetic field. In order to obtain the ex-
pansion of the Helmholtz free energy (B.3) we apply the
method developed in reference [13]; from this expansion
we are able to obtain the thermodynamic quantities of
the model for arbitrary spin values. The expansion (B.3)
recovers the β-expansion of the Helmholtz free energy pre-
sented in Reference [9] for several values of spin, and it is
an extension to the results of Reference [12], where we
include the anisotropy effects.

The series in S allows us to obtain the classical limit
of the XXZ model, but taking into account the quan-
tum nature of the spins. For the particular case h = 0
and D = 0 we recover Joyce’s result for the classical limit
of this model [11]. We explicitly show in expansion (4)
that only the presence of an external magnetic field distin-
guishes the classical ferromagnetic and antiferromagnetic
phases in the regime of high temperatures.

We interpolate the β-expansion with its low tempera-
ture series using the Padé approximant of (B.3) to extrap-
olate the properties of the specific heat to finite tempera-
tures using the method developed in reference [14]. Only
a few terms of the high temperature series are needed to
yield good agreement: for low spin values the deviation of
all non-singular Padé approximants respect to Pavr fluc-
tuates around 5%.

For the antiferromagnetic magnetic susceptibility we
use the Dlog-Padé [15] approximants to investigate the
finite temperature properties of the spin-s quantum XXZ
chain. In order to plot the magnetic susceptibility χs(T ) as
a function of temperature for different spin values we take
the average of all non-singular Dlog-Padé approximants,
since their deviation from the corresponding Pavr is less
than 2%. The ferromagnetic case is studied by applying
two-point like Padé approximants, since we have the first

three terms of the low temperature series expansion [24].
The magnetic susceptibility is plotted for different spins,
in the same way as for the previous case.

Obviously, if we knew more low temperature informa-
tion about any physical quantities, it could be also inter-
polated with our high temperature expansions, by adapt-
ing different approximants available in the literature. Our
main limitation regarding the study of finite temperature
behavior of other parameters of the Hamiltonian (2) is the
lack of related low temperature information.

O.R. thanks FAPEMIG for financial support. The authors are
in debt to CNPq for partial financial support. S.M. de S. thanks
to FAPEMIG and M.T.T thanks FAPERJ for partial financial
support.

Appendix A: Normalized traces of (Sz)l

We have that tr((Sz)n) = 0 if n is odd. For the purposes
of this appendix, n is taken as an even integer. In order to
calculate tr((Sz)n) we use the result of reference [17] that
permits us to write this trace as a function of the spin S,

tr((Sz)n) =
S∑

j=−S

jn =
n+1∑

r=0

Cr,nSr, (A.1)

where S = 1/2, 1, 3/2, · · · , Cr,n =
(1+(−1)n)

n+1

∑n+1
k=0

(
k
r

)
bk,n+1, so that bk,n’s are the co-

efficients of Bernoulli’s polynomial Bn(x). They are
defined by [17]

Bn(x) =
n∑

k=0

bk,nxk. (A.2)
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On the other hand, we prefer to rewrite equation (A.1)
as a function of the square of the norm of the spin S (that
is, S(S + 1)), which is a constant of motion,

S∑

j=−S

jn = (2S + 1)
n/2∑

r=0

Ar,n(S(S + 1))r. (A.3)

We remind that 2S + 1 is equal to the dimension of
the Hilbert space at each site, that is, tri(1) = 2S + 1,
i = 1, 2, · · · , N . Comparing equations (A.1) and (A.3),
and after some algebraic manipulation, we obtain each
coefficient Ar,n of equation (A.3) as a combination of the
Bernoulli numbers [17] Bn+1−j ,

Ak,n =
(1 + (−1)n)(−1)k+1

n + 1

k∑

j=0

(
n + 1

j

)(
2k − j

k

)
Bn+1−j .

(A.4)

In equation (2) we rewrite Hamiltonian (1) in terms
of the rescaled spin operator s. To obtain the results
(B.4–B.10) we need to calculate the powers of the oper-
ator sz . From the results (A.1–A.4) we are able to write
the normalized traces of sz, that is 〈(sz)2n〉 just as a poly-
nomial of y ≡ 1

S(S+1) of degree n/2 − 1, which reads

〈(sz)n〉 =
n/2∑

r=0

An/2−r,n yr. (A.5)

In terms of the normalized matrix representation, the
commutation relation becomes

[sx, sy] =
isz

√
S(S + 1)

= i
√

y sz , (A.6)

which is useful to evaluate the normalized traces.

Appendix B: The β-expansion of the free
energy for the spin-s XXZ chain

We call Ws(β) the Helmholtz free energy of the Hamil-
tonian (2), that drives the dynamics of the quantum spin
chain with unitary norm. Let WS(β) be the Helmholtz
free energy of the Hamiltonian

HS =
N∑

i=1

J (Si,Si+1)∆ − hSz
i + D(Sz

i )2, (B.1)

where the norm of the spin-S is
√

S(S + 1) and S =
1/2, 1, 3/2, · · · . In reference [9] we calculated the high tem-
perature expansion of the Helmholtz free energy of the
Hamiltonian (B.1) up to S = 4. The relation between the

free energies derived from Hamiltonians (2) and (B.1) is

Ws(J,∆, h, D; β) =
1

S(S + 1)

×WS

(
J, ∆,

√
S(S + 1)h, D;

β

S(S + 1)

)
(B.2a)

= WS

(
J

S(S + 1)
, ∆,

h√
S(S + 1)

,
D

S(S + 1)
; β

)
.

(B.2b)

In equations (B.2), the parameters of the respec-
tive Hamiltonians are shown explicitly. Equating equa-
tions (B.2a) and (B.2b), we verify that WS is an homoge-
neous function of degree 1.

In this appendix we present the high temperature ex-
pansion of the Helmholtz free energy Ws(β), up to order
β6 (n = 7), for arbitrary value of s(s = S). This expansion
can be written in terms of y ≡ 1

S(S+1) , that is,

Ws(β) = − ln(2S + 1)
β

+
6∑

r=0

wr(y)βr + O(β7). (B.3)

The coefficients wr(y), for r = 0, 1, · · · , 6, are shown be-
low. For the sake of simplicity, we define x ≡ (3y − 4).

w0(y) = D
3 (B.4)

w1(y) = D2 x
90 − h2

6 − J2

9 − J2 ∆2

18 (B.5)

w2(y) = (J2 D
135 + D3 (15 y−4)

5670 − J2 ∆2 D
135 − h2 D

90 )x

− J3 ∆ y
36 + J ∆ h2

9 (B.6)

w3(y) = (2 J ∆ h2 D
135 − h2 D2 (15 y−4)

3780 − J2 D2 (27 y+4)
18900

+ D4 (105 y2−54 y−8)
113400 − 8 J2 ∆2 D2 (2 y−1)

4725 )x

+ h4 (y+2)
360 − J4 (−128 y+12+33 y2)

16200 + J2 ∆2 h2 (3 y−14)
270

− J4 ∆4 (−16 y+14+y2)
5400

+ J2 h2 (9 y+8)
540 − J4 ∆2 (−32 y−72+27 y2)

8100 (B.7)

See equation (B.8) next page

See equation (B.9) next page

See equation (B.10) next page

The coefficients J , D and h in (B.4)-(B.10) are the con-
stants in Hamiltonian (2).

Writing the expansion (B.3) in terms of the variable
y greatly simplifies the calculation of its classical limit
(y → 0).
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w4(y) =(J2 ∆2 h2 D (16 y−43)
4725

+ 16 J ∆ h2 D2 (2 y−1)
4725

− J4 ∆4 D (y2−12 y+4)
11340

− h2 D3 (105 y2−54 y−8)
56700

− J3 ∆ D2 y (9 y−2)
8100

+ D5 (15 y−4) (105 y2−48 y−16)
3742200

− J4 ∆2 D (3 y+4) (y−4)
22680

+ J2 h2 D (27 y+4)
18900

+ J4 D (5 y2−32 y−8)
22680

+ J2 D3 (3 y2−60 y−32)
170100

+ h4 D (5 y+8)
7560

− J2 ∆2 D3 (75 y2−63 y+4)
42525

)x

− J ∆ h4 (y+2)
135

+ J3 ∆ h2 (9 y+8) (y−3)
1350

+ J3 ∆3 h2 (−48 y+92+3 y2)
4050

− J5 ∆3 y (−16 y−4+3 y2)
6480

− J5 ∆ y (−16 y−4+3 y2)
3240

(B.8)

w5(y) =(− J2 D4 (65223 y3+34020 y2−5904 y−16064)
785862000

+ J3 ∆3 h2 D (3 y2−36 y+40)
8505

+ J5 ∆ D y2 (4 y−27)
40500

− J4 D2 (4287 y3−14910 y2+2404 y+3184)
23814000

+ J3 ∆ h2 D (39 y2−62 y−40)
28350

− 2 J ∆ h4 D (16 y+27)
14175

+ 2 J ∆ h2 D3 (75 y2−63 y+4)
42525

− J3 ∆ D3 y (213 y2−129 y+20)
425250

+ J2 h2 D2 (123 y2+32 y+32)
113400

+ D6 (7182945 y4−6404130 y3+569016 y2+443424 y+2944)
30648618000

− h2 D4 (15 y−4) (105 y2−48 y−16)
1496880

− J4 ∆4 D2 (111 y3−1155 y2+888 y−16)
1190700

+ h4 D2 (105 y2+74 y−72)
226800

+ J2 ∆2 h2 D2 (15 y2−36 y+16)
5670

− J4 ∆2 D2 (369 y3−546 y2−751 y−116)
1488375

− J2 ∆2 D4 (204885 y3−224028 y2+39888 y+8768)
196465500

− J5 ∆3 D y2 (4 y−27)
40500

)x + J4 ∆4 h2 (−768 y2−2872+2748 y+45 y3)
340200

− h6 (12 y+16+3 y2)
45360

− J2 h4 (632 y+432+333 y2)
226800

− J6 ∆2 (101120+203200 y+83481 y2−289584 y3+42174 y4)
142884000

− J6 (−33760−1920 y+239418 y2−127872 y3+14067 y4)
214326000

− J2 ∆2 h4 (−424 y−1074+69 y2)
56700

− J6 ∆4 (−16960+50720 y+30846 y2−33624 y3+4239 y4)
71442000

+ J4 h2 (−108 y2−32−160 y+27 y3)
45360

− J6 ∆6 (1712−15408 y+14688 y2−2700 y3+135 y4)
42865200

+ J4 ∆2 h2 (−813 y2+848+383 y+135 y3)
85050

(B.9)

w6(y) = − 2 J ∆ h4 D2 x2

4725
+ (− J2 ∆2 D5 (1780695 y4−2280645 y3+677964 y2+89296 y−25024)

2554051500

+ J2 h2 D3 (262035 y3−85176 y2+12576 y−16064)
392931000

− J6 ∆6 D (45 y4−720 y3+2988 y2−1608 y−208)
15309000

− J2 h4 D (31 y2+40 y+16)
75600

− J4 ∆2 D3 (25002 y4−47646 y3−23907 y2+15308 y+10464)
147349125

− J6 ∆4 D (729 y4−5328 y3+4488 y2+7784 y+1248)
30618000

+ J4 h2 D (1935 y3−1974 y2+2404 y+3184)
23814000

+ J6 ∆2 D (108 y4−684 y3+201 y2+524 y+624)
15309000

+ J2 ∆2 h2 D3 (40977 y3−91791 y2+58890 y−7240)
19646550

+ J3 ∆ h2 D2 (7425 y3−11907 y2−2928 y−928)
5953500

+ J4 ∆2 h2 D (972 y3−4851 y2+1567 y+2084)
1786050

− J2 ∆2 h4 D (35 y2−141 y−332)
56700

+ J ∆ h2 D4 (204885 y3−224028 y2+39888 y+8768)
98232750

− J5 ∆3 D2 y (1422 y3−8253 y2+3697 y−208)
11907000

− J5 ∆ D2 y (1455 y3−5418 y2−428 y+376)
11907000

+ J4 ∆4 h2 D (1665 y3−22113 y2+53808 y−35212)
17860500

+ h4 D3 (2625 y3+300 y2−1928 y+224)
7484400

+ J3 ∆3 h2 D2 (333 y3−3465 y2+4596 y−1504)
893025

+ J6 D (603 y4−5400 y3+10062 y2+3520 y−416)
30618000

− J4 ∆4 D3 (2 y−1) (8925 y3−79200 y2+49076 y+8912)
196465500

− J3 ∆ D4 y (4413 y3−4214 y2+724 y+48)
11907000

− J2 D5 (150639 y4+58088 y3−28064 y2−67200 y−17664)
3405402000

− h6 D (7 y2+22 y+24)
226800

− J4 D3 (6201 y4+346320 y3−363672 y2−223664 y−35136)
2357586000

− J ∆ h4 D2 y2

567

+ D7 (15 y−4) (315315 y4−238140 y3+1896 y2+17664 y+2944)
30648618000

− h2 D5 (7182945 y4−6404130 y3+569016 y2+443424 y+2944)
10216206000

)x + J ∆ h6 (44 y+54+11 y2)
28350

− J7 ∆ y (1600+6432 y+51631 y2−24768 y3+2556 y4)
40824000

− J3 ∆ h4 ,(−284 y2−640−834 y+99 y3)
113400

− J7 ∆5 y (−400−3344 y+9228 y2−2964 y3+243 y4)
20412000

− J3 ∆3 h4 (−228 y2+1488+328 y+15 y3)
85050

+ J5 ∆3 h2 (−33440+1080 y+51411 y2−25974 y3+2754 y4)
7144200

+ J5 ∆ h2 (10112+30512 y+4629 y2−20844 y3+3159 y4)
7144200

+ J5 ∆5 h2 (20528−31872 y+16452 y2−2700 y3+135 y4)
7144200

− J7 ∆3 y (3200+19808 y+14719 y2−12912 y3+1584 y4)
20412000

(B.10)
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